
  
  

Version: 3.2 
24.08.2014 
page 1/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

EuPlatesc.ro Gateway 

 

 

Standard Merchant interface 

 

 

 

 

 

 

 

Merchant integration in the electronic commerce – EuPlatesc.ro Gateway 

based on 3DSecure Standard 
 

(Visa and MasterCard) 

 

 

 

 

 

 

 

 

 

 
 

 

 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 2/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

Overview 

 
This manual is intended for use by programmers responsible for the merchant payment module interface with the 

gateway. It describes the interface that merchant systems use to process credit card based e-commerce transactions 

using the standard HTTP forms posting method. 

 

This manual covers the following payment aspects: 

1. General transaction processing 

2. Recurring transaction processing 

3. Installment transction processing 

4. Discount/loyalty transaction processing 

5. Processing via webservice 

6. SMS payments processing 

7. Email orders 

8. Management messages 

9. Authorisation sequence diagram 

10. Recurring payment sequence diagram 

11. Payment processing sequence diagram 

12. SOAP webservices description 

13. Java, PHP, C# code example. 

 

1 General transaction processing 
Message Structure - Authorisation Request 

 

The following fields set will be posted to EuPlatesc.ro platform through the HTTP POST 

method. The set of fields are divided into 2 sections: fields included in digital signature of the 

message (fp_hash) and fileds not included in the digital signature of the message (fp_hash).  

Table 1. Fields generated by merchant system and included into the fp_hash 

 

Field name Format 

 

Length 

 

Description 

 

amount Decimal 

 

1-12 

 

Order total amount in float format with decimal point 

(thousand separator not allowed). Ex: 1234.56  

curr String 03 Order currency: 3-character currency code 

(RON, USD, EUR) 

invoice_id Numeric 6-27 Merchant order ID 

order_desc String 1-50 Order description 

merch_id String 8-50 Merchant ID assigned by EuPlatesc.ro 

timestamp YYYYM 

MDDHH 

MMSS 

14 Merchant transaction timestamp in GMT: 

YYYYMMDDHHMMSS. 

nonce String 16-64 Merchant nonce. Must be filled with unpredictable 

random bytes in hexadecimal format 

fp_hash String 1-256 Merchant MAC in hexadecimal form. 

 

Table 2. Fields generated by merchant system and NOT included into the fp_hash 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 3/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 

Field name Format 

 

Length 

 

Description 

 

Billing details 

fname String 1-255 Client first name 

lname String 1-255 Client last name 

company String 1-255 optional 

add String 1-255 Client street 

city String 1-255 Client city 

state String 1-255 Client state - optional 

zip String 1-25 Client postal code 

country String 1-55 Client country 

phone String 1-225 Client phone 

fax String 1-25 Client fax - optional 

email String 1-65 Client email 

Shipping Details – if there are different that billing details 

sfname String 1-255 Client first name 

slname String 1-255 Client last name 

scompany String 1-255 optional 

sadd String 1-255 Client street 

scity String 1-255 Client city 

sstate String 1-255 Client state - optional 

szip String 1-25 Client postal code 

scountry String 1-55 Client country 

sphone String 1-25 Client phone 

sfax String 1-25 Client fax - optional 

semail String 1-55 Client email 

Extra information sent by the merchant to the gateway 

ExtraData String 0-10240 Additional information sent by the mechant to the 

gateway. This data will be posted back to the 

merchant during silent_reply. 

 

  

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 4/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

Table 3. EuPlatesc.ro responce fileds set 

Response can be sent back to the merchant in 3 ways: 

- replay via client`s browser 

- silent reply via server to server method 

- both methods defined above  

 

Field name Format 

 

Length 

 

Description 

 

amount Numeric 1-12 Echo from the request 

curr String 03 Echo from the request 

invoice_id Numeric 6-32 Echo from the request 

ep_id String 1-50 Gateway unique id for each transaction. 

merch_id String 8-50 Echo from the request 

action Numeric 1 If 0 – transaction approved else transaction failed. 

message String 1-50 Response code text message. 

approval String 06 Client bank’s approval code. Can be empty if not 

provided by gateway. 

timestamp YYYYM 

MDDHH 

MMSS 

14 Merchant transaction timestamp in GMT: 

YYYYMMDDHHMMSS. 

nonce String 1-64 Merchant nonce. Must be filled with 8-32 

unpredictable random bytes in hexadecimal format 

fp_hash String 1-256 Merchant MAC in hexadecimal form. 

Extra information sent by the merchant to the gateway 

ExtraData String 0-10240 Additional information sent by the mechant to the 

gateway. This data is posted back to the merchant 

during silent_reply. 

 

 

2 Recurring transaction processing 
An additional field must be sent to the gateway, in order to process recurring transactions: 

    

 <input name="recurent" type="hidden" /> 

 

Recurring transactions are splitted into two parts: 

- initial transaction – recurent value is “Base”  

- subsecquent recurring transactions - recurent value is “Recurent”. In case of ”Recurent” 

message, the merchant must send also: 

<input type="text" NAME="baseEPID" VALUE="" /> 

“baseEPID” value is “ep_id” of the initial “Base” transction. 

All the other fields from the general message structure must be sent for successfully transaction 

processing.  

 

In order to process recurring transctions, euplatesc.ro system must be configured in advance. 
 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 5/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

3 Installment transction processing 
An additional field must be sent to the gateway, in order to process installment transactions: 

    

 <input name="ExtraData[rate]" type="hidden" value="banca-3" /> 

 

Where: 

- banca - the issuing bank used for installments. Allowed values are: 

- rzb – Raiffeisen Bank 

- bcr – Romanian Commercial Bank 

- apb – Alpha Bank 

- btrl – Transilvania Bank 

- 3 – installments allowed 

 

If the number of installment is not sent, euplatesc.ro payment interface will display a dropdwon 

list, with allowed values. In this way, the client will be able to choose the number of installments 

directly on the payment interface. 

 

In order to process installment transctions, euplatesc.ro system must be configured in advance. 

4 Discount/loyalty transaction processing 
 
General request message structure is used in order to process this type of transactions. 

 

For merchants that are included into the loyalty processing scheme, the silent_reply will containg 

the following data also: 

 
$extradata['applied_discount_info'] = array( 
  'org_amount'         => ,   // original amount recived form merchant 
  'discounted_ammount' => ,   // the discount amount substracted from original amount 
  'discount'           => ,   // the applied discount (percent) 
  'discount_message'   => ,   // description of applied rule 
   ); 

 

Euplatesc.ro system must be configured in advance to process this transactions. 

 

5 Processing via webservice 

6 SMS payments processing 
 

All the fields from the general message structure must be sent for successfully transaction 

processing.  

 

For SMS payment processing, euplatesc.ro system must be configured in advance. 
 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 6/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

7 Email orders 

8 Management messages 
 

Merchant MAC – Message Authentication Code (fp_hash value) 

 

To authenticate transaction messages on EuPlatesc.ro to/from the merchant link, the merchant 

system should be able to calculate and verify message authentication codes. The merchant 

system should be able to redirect transactions through cardholder browser, and to send messages 

directly to EuPlatesc.ro 3Dsystem. MAC is calculated over all fields generated by the merchant 

system as defined in corresponding format tables (visible and hidden fields generated by the 

merchant system) except the MAC field (“fp_hash”) itself. 

In order to generate or verify the message authentication field, the merchant system must 

assemble a MAC source string; all field values from the format tables are prefixed with the 

decimal field length in ASCII and concatenated in the specified order. The default MAC 

algorithm is HMAC_MD5. 

 

Payment message example 

 

Suppose that we have a transaction with following fields: 

 

Field Length Value 

amount 5 100.00 

curr 3 RON 

invoice_id 7 6233097 

order_desc 5 Shoes 

merch_id 11 testaccount 

timestamp 14 20060826054802 

nonce 32 e15800a1f52ab6b42e852a9943a6a72a 

 

MAC source string for this example is: 

 

6100.003RON762330975Shoes11testaccount142006082605480232e15800a1f52ab6b4 

2e852a9943a6a72a 

 

Line breaks are inserted for visibility only.  

After the MAC source string is assembled, the merchant system must apply a cryptographic 

algorithm to generate the message authentication code (HMAC_MD5). The merchant system 

must implement the encryption algorithm either in hardware or software form and be fully 

responsible for the secure storage and usage of corresponding cryptographic key.  

For our MAC source string example and HMAC_MD5 algorithm with hexadecimal secret key 

“00112233445566778899AABBCCDDEEFF”, the result MAC (“fp_hash”) field must be equal 

to: 

 

340f3874744bc5710e6eebe386286a64 

  

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 7/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

Transaction Flow Scenario 

 

1. After selecting goods and services, the cardholder presses ‘Buy’ or an equivalent button and 

proceeds to a page where he can enter or modify delivery information and the payment method. 

Payment method information may offer various payment methods, like ‘Pay by credit card’ or a 

similar option.  

This option should not include card number, expiry date, CVC2 or any other card related 

sensitive information. Because of security risks involved, for the merchant system is 

mandatory to avoid requesting and storing credit card information on the his servers. 

 

2. If cardholder selects ‘Pay by credit card’ option, merchant system must prepare authorization 

request fields (form) and redirect the cardholder to an ‘Enter credit card information' webpage on 

e-Commerce Gateway system.. 

 

3. After receiving the filled-in form, e-Commerce Gateway validates request information 

including the message authentication code.  

 

4. Upon authorization, reception gateway prepares and sends a transaction response back to the 

merchant system. Gateway sends response messages to the merchant system using HTTP POST 

redirect. 

  

5. After receiving the online transaction response, the merchant system starts delivery of ordered 

goods and/or services to the cardholder. At this point, the requested amount is blocked on the 

cardholder account. Merchant should send an e-mail invoice message to the cardholder with 

order information and delivery time if applicable. 

 

6. When the merchant has the confirmation that the goods/services has been delivered to 

cardholder, the merchant sends a “Capture” message from that gateway using „Capture tool” 

available into the gateway. 

 

7. If the merchant is unable to fulfill the cardholder order or if the cardholder cancels the order at 

a stage allowed by the merchant, the merchant  must send a “Reversal” message to cancel the 

pending or completed transaction, using the specific tool available into the gateway. 
  

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 8/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 
  

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 9/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 
  

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.2 
24.08.2014 
page 10/24 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 11/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

WebService calls: 

The following SOAP webserivces are available: 

 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 12/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 

 

 

 
  

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 13/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 

 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 14/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 

 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 15/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 
/** 
 * class CaptureRequest 
 * 
 * @author Stefan 
 * 
 * CaptureRequest structure is an array or class that extends DORequest = the structure that represent transaction to be captured. 
 *  The structure is 
 *      ep_id <string[40]> <required> is the transaction's unique ID receive from the payment system after a successful approval 
 *      mid <string[15]> <required> is the merchant terminal. This is defined on opening a merchant account on EuPlatesc system 
 *      amount <float[10.2]> <required> is the amount of the approved transaction. 
 *      curr <string[3]> <required> is the currency of the approved amount 
 *      delivery_awb <string> <optional> if missing set it to NULL, is the delivery document (AWB or invoice number) used in case of chargeback 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the request timestamp set by the merchant system on sending this request. Filled on __constructor if is NULL. 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 16/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 */ 

/** 
 * class CaptureResponse 
 * @author Stefan 
 * 
 *  CaptureResponse structure is an array or class that extends WSResponse = that contain the response of the capture operation 
 *      ep_id <string 40> is the transaction's unique ID receive from the payment system after a successful approval 
 *      status <int> is the confirmation code 
 *      message <string> is the confirmation string message 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the response timestamp set by the EuPlatesc system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 * 
 *   status  message 
 *   0        capture: capture pending OK 
 *   101        capture: invalid parameter ep_id: <ep_id> 
 *   102        capture: invalid parameter mid: <mid> 
 *   103        capture: invalid parameter curr: <curr> 
 *   104        capture: invalid parameter timestamp: <timestamp> 
 *   105        capture: invalid parameter amount (AMOUNT > 0): <amount> 
 *   301        capture: capture not possible, transaction isn't approved 
 *   302        capture: capture not possible, transaction expired 
 *   303        capture: capture not possible, transaction data didn't match 
 *   304        capture: transaction already captured 
 *   305        capture: transaction is reversal 
 *   306        capture: capture request already sent 
 *   307        capture: capture not permitted; actual status is <the_status> 
 *   308        capture: capture not permitted, reversal pending 
 *   401        capture: transaction not found 
 *   901        capture: internal error 
 *   999        capture: unknown error 
 */ 

/** 
 * class ReversalRequest 
 * @author Stefan 
 * 
 * ReversalRequest structure is an array or class that extends DORequest = the structure that represent transaction to be reversed. 
 *  The structure is 
 *      ep_id <string[40]> <required> is the transaction's unique ID receive from the payment system after a successful approval 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 17/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 *      mid <string[15]> <required> is the merchant terminal. This is defined on opening a merchant account on EuPlatesc system 
 *      amount <float[10.2]> <required> is the amount of the approved transaction. 
 *      curr <string[3]> <required> is the currency of the approved amount 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the request timestamp set by the merchant system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 */ 

/** 
 * class ReversalResponse 
 * @author Stefan 
 * 
 *  ReversalResponse structure is an array or class that extends WSResponse = that contain the response of the reversal operation 
 *      ep_id <string 40> is the transaction's unique ID receives on capture operation call 
 *      status <int> is the confirmation code 
 *      message <string> is the confirmation string message 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the response timestamp set by the EuPlatesc system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 * 
 *   status  message 
 *   0          reversal: reversal pending OK 
 *   101        reversal: invalid parameter ep_id: <ep_id> 
 *   102        reversal: invalid parameter mid: <mid> 
 *   103        reversal: invalid parameter curr: <curr> 
 *   104        reversal: invalid parameter timestamp: <timestamp> 
 *   105        reversal: invalid parameter amount (AMOUNT > 0): <amount> 
 *   301        reversal: reversal not possible, transaction isn't approved 
 *   302        reversal: reversal not possible, after the permitted time frame 
 *   303        reversal: reversal not possible, transaction data didn't match 
 *   304        reversal: reversal not possible, transaction already captured 
 *   305        reversal: transaction already is reversal 
 *   306        reversal: reversal request already sent 
 *   401        reversal: transaction not found 
 *   901        reversal: internal error 
 *   999        reversal: unknown error 
 */ 

/** 
 * class RefundRequest 
 * @author Stefan 
 * 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 18/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 * RefundRequest structure is an array or class that extends DORequest = the structure that represent transaction to be refunded. 
 * The RefundRequest message will flag the transaction to be processed offline by EuPletesc team.    
 *  The structure is 
 *      ep_id <string[40]> <required> is the transaction's unique ID receive from the payment system after a successful approval 
 *      mid <string[15]> <required> is the merchant terminal. This is defined on opening a merchant account on EuPlatesc system 
 *      amount <float[10.2]> <required> is the amount of the approved transaction. 
 *      curr <string[3]> <required> is the currency of the approved amount 
 *      reason <string> <required> the reason of refund 
 *      fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the request timestamp set by the merchant system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message. 
 */ 

/** 
 * class RefundResponse 
 * @author Stefan 
 * 
 *  RefundResponse structure is an array or class that extends WSResponse = that contain the response of the refund operation 
 *      ep_id <string 40> is the transaction's unique ID receives on capture operation call 
 *      status <int> is the confirmation code 
 *      message <string> is the confirmation string message 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the timestamp of this message. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message. 
 * 
 *   status  message 
 *   0          refund: refund pending OK 
 *   101        refund: invalid parameter ep_id: <ep_id> 
 *   102        refund: invalid parameter mid: <mid> 
 *   103        refund: invalid parameter curr: <curr> 
 *   104        refund: invalid parameter timestamp: <timestamp> 
 *   105        refund: invalid parameter amount (AMOUNT > 0): <amount> 
 *   301        refund: refund not possible, transaction isn't approved 
 *   302        refund: refund not possible, after the permitted timeframe 
 *   303        refund: refund not possible, transaction data didn't match 
 *#  304        refund: refund not possible, transaction already captured 
 *   305        refund: transaction already is refunded/reversal 
 *   306        refund: refund request already sent 
 *   401        refund: transaction not found 
 *   901        refund: internal error 
 *   999        refund: unknown error 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 19/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 */ 

/** 
 * class PartialCaptureRequest 
 * @author Stefan 
 * 
 * PartialCaptureRequest structure is an array or class that extends DORequest = the structure that represent transaction to be partial captured. 
 *  The structure is 
 *      ep_id <string[40]> <required> is the transaction's unique ID receive from the payment system after a successful approval 
 *      mid <string[15]> <required> is the merchant terminal. This is defined on opening a merchant account on EuPlatesc system 
 *      amount <float[10.2]> <required> is the original amount of the approved transaction. 
 *      amount_to_refund <float[10.2]> <required> is the amount to be given back to the cardholder, float postive value between 0 and amount. 0 = no refund 
 *      curr <string[3]> <required> is the currency of the approved amount 
 *      delivery_awb <string> <required> if missing set it to NULL, is the delivery document (AWB or invoice number) used in case of chargeback 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the request timestamp set by the merchant system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 * 
 * The captured transaction is (amount - amount_to_refund) 
 * !! This operation is implemented as a partial refund 
 * 
 * For this type of operatin the merchant will be charged additionaly as: 
 *      - assume that the transaction fee is fee% 
 *      - the charged fee = (amount + (amount - amount_to_refund)) * fee% = (2 * amount + amount_to_refund) * fee% 
 */ 

/** 
 * class PartialCaptureResponse 
 * @author Stefan 
 * 
 *  PartialCaptureResponse structure is an array or class that extends WSResponse = that contain the response of the partial captured operation 
 *      ep_id <string 40> is the transaction's unique ID receives on capture operation call 
 *      status <int> is the confirmation code 
 *      message <string> is the confirmation string message 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the response timestamp set by the EuPlaresc system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 

 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 * 
 *   status  message 
 *   0        partial_capture: partial_capture pending OK 
 *   101        partial_capture: invalid parameter ep_id: <ep_id> 
 *   102        partial_capture: invalid parameter mid: <mid> 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 20/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 *   103        partial_capture: invalid parameter amount (AMOUNT > 0): <amount> 
 *   104        partial_capture: invalid parameter timestamp: <timestamp> 
 *   105        partial_capture: invalid parameter amount_to_refund [0; ORG_AMOUNT]: <amoun_to_refund> 
 *   106        partial_capture: invalid parameter curr: <curr> 
 *   301        partial_capture: reversal not possible, transaction isn't approved 
 *   302        partial_capture: reversal not possible, transaction expired 
 *   303        partial_capture: reversal not possible, transaction data didn't match 
 *   304        partial_capture: reversal not possible, transaction already captured 
 *   305        partial_capture: transaction already is reversal/partial_capture 
 *   306        partial_capture: partial_capture request already sent 
 *   401        partial_capture: transaction not found 
 *   901        partial_capture: internal error 
 *   999        partial_capture: unknown error 
 */ 

/** 
 * class RecurentRequest 
 * RecurentRequest is a class that extends DORequest = used for call a recurrent payment. 
 *    call function addHMAC($key) before pass this structure to EuPlatesc WebServices in order to set the fp_hmac, timestamp, nonce value. 
 *    call function addHMAC($key) before each call EuPlatesc WebServices even the data is identical. 
 *   
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *    timestamp <yyyymmddhhiiss> <required> is the request timestamp set by the merchant system on sending this request. Filled on __constructor if is NULL. 
 *    nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *    fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the EuPlatesc. 
It is the control key of the message.  
 * 
 * @author Stefan 
 * 
 */ 

/** 
 * class RecurentResponse 
 * RecurentResponse is a class that extends StdClass used for call a recurrent payment. 
 * This is the structure of the a Recurent EuPlatesc WebService call 
 * @author Stefan 
 * 
 *      ep_id <string 40> is the transaction's unique ID receives on capture operation call 
 *      status <int> is the confirmation code 
 *      message <string> is the confirmation string message 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the response timestamp set by the EuPlatesc system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 * 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 21/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 *   $status    message 
 *   0          recurent: recurent pending OK 
 *   101        recurent: invalid parameter ep_id: <ep_id> 
 *   102        recurent: invalid parameter mid: <mid> 
 *   103        recurent: invalid parameter amount (AMOUNT > 0): <amount> 
 *   104        recurent: invalid parameter curr: <curr> 
 *   105        recurent: invalid parameter timestamp: <timestamp> 
 *   106        recurent: invalid parameter oredr_desc: <oredr_desc> 
 *   107        recurent: invalid parameter recurent: <recurent> 
 *   108        recurent: invalid parameter email: <email> 
 *   109        recurent: invalid parameter invoice_id: <invoice_id> 
 *   301 
 *   302 
 *   303 
 *   304 
 *   305 
 *   306 
 *   401 
 *   901 
 *   999 
 */ 

/** 
 * class StatusRequest 
 * Ask about a transaction status 
 *  
 * @author stefan 
 * 
 *    ep_id, is the transaction's unique ID receive from the payment system after a successful approval 
 *    mid, Merchant ID 
 *    what, optional - what status you what to get, actual only EPS_GET_ALL_STATUS is implemented 
 *    timestamp <yyyymmddhhiiss> <required> is the request timestamp set by the merchant system on sending this request. Filled on __constructor if is NULL. 
 *    nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *    fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the EuPlatesc. 
It is the control key of the message.  
 */ 

/** 
 * class StatusResponse 
 * provide the transaction status details 
 *  
 * @author stefan 
 * 
 *  transaction_status       // Transaction status as integer 
 *  transaction_status_msg   // Transaction status as text 
 *  approval                 // The approval code of. Is set only if the transaction is apprved 
 *  rrn                      // The RRN code of the tranzaction 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 22/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 *  cbk                      // If the transaction has charge back  
 *  approval_date            // the date of the approval request 
 *  capture_date             // date when the transaction was captured, if is captured 
 *  refund_date              // date when the transaction was refunded, if is refunded 
 *  original_value           // the approval value 
 *  curr                     // currency 
 *  refunded_value           // the amount that was refund (<= approval value) 
 *  effective_captured_value // the net amount (original_value - refunded_value) 
 *  installments             // number of approved installments 
 *  installment_bank         // instalemnts on bank 
 *  discount_amount          // if the transactuona has discont 
 *  transaction_channel      // transaction channel: CARD, SMS, OP 
 *  transaction_type         // recurring flag 
 *  settlement               // the EuPlatesc invoice 
 *  what                     // the what value recevide in StatusRequest message 
 *  fee                      // unused 
 *  ep_id                    // string, is the transaction's unique ID receive from the payment system after a successful approval 
 *  mid                      // string Merchant ID (terminal ID) 
 *  status                   // int, error code 0 => OK != 0 => an error occurred  
 *  message                  // string, error code message 
 *  timestamp                // <yyyymmddhhiiss> <required> is the response timestamp set by the EuPlatesc system on sending this request. Filled on __constructor if is 
NULL. 
 *  nonce                    // hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to 
identify duplicate messages. 
 *  fp_hash                  // hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by 
the EuPlatesc. It is the control key of the message.  
 */ 

/** 
 * class getRecurringPaymentListRequest 
 * 
 * @author Stefan 
 * 
 * getRecurringPaymentListRequest structure is an array or class that extends EuPlatescMessage = the structure that represent the mesage request. 
 *  The structure is 
 *      ep_id <string[40]> <required> is the transaction's unique ID receive from the payment system after a successful approval 
 *      mid <string[15]> <required> is the merchant terminal. This is defined on opening a merchant account on EuPlatesc system 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *    timestamp <yyyymmddhhiiss> <required> is the request timestamp set by the merchant system on sending this request. Filled on __constructor if is NULL. 
 *    nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *    fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the EuPlatesc. 
It is the control key of the message.  
 */ 

/** 
 * class getRecurringPaymentListResponse 
 * getRecurringPaymentListResponse is a class that extends StdClass used for get a list of last 10 recurrent payment. 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 23/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 * This is the structure of the a Recurent EuPlatesc WebService call 
 * @author Stefan 
 * 
 *      ep_id <string 40> is the transaction's unique ID receives on capture operation call 
 *      status <int> is the confirmation code 
 *      message <string> is the confirmation string message 
 *      recurring_lits <array of RecurringPaymentList> 
 *      fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the response timestamp set by the EuPlaesc system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 * 
 *   $status    message 
 *   0          getRecurringPaymentListResponse: recurent pending OK 
 *   101        getRecurringPaymentListResponse: invalid parameter ep_id: <ep_id> 
 *   102        getRecurringPaymentListResponse: invalid parameter mid: <mid> 
 *   105        getRecurringPaymentListResponse: invalid parameter timestamp: <timestamp> 
 *   301 
 *   302 
 *   303 
 *   304 
 *   305 
 *   306 
 *   401 
 *   901 
 *   902        getRecurringPaymentListResponse: invalid parameter RecurringLits [must be an array of RecurringPaymentList]. 
 *   999 
 */ 

/** 
 * class EuPlatescMessage 
 * 
 * implements the basic functions of the messages that is used to communicate with EuPlatesc (www.euplatesc.ro) webservices 
 *  
 *    call function addHMAC($key) before pass this structure to EuPlatesc WebServices in order to set the fp_hmac, timestamp, nonce value. 
 *    call function addHMAC($key) before each call EuPlatesc WebServices even the data is identical. 
 *  
 * 
 * @author stefan 
 * 
 *  The structure is 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the request/response timestamp set by the merchant/EuPlatesc system on sending this request. Filled on __constructor if is 
NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 

http://www.europayment.ro/
http://www.eupayment.eu/


  
  

Version: 3.0 
05.08.2013 
page 24/24 

 

Europayment Services s.r.l.  Str. Mizil 2C, bl. Socum, etaj 1, st\nga, sector 3, Bucureşti, Romania; CUI: RO18773866,  
RC: J40/9950/16.06.2006, IBAN: RO41 RNCB 0089 0957 6044 0001, BCR - Ag. Theodor Plallady, București, România 

http://www.EuPlatesc.ro.ro, http://www.eupayment.eu E-mail: office@euplatesc.ro 

 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 *       
 */ 

/* class DORequest 
 * 
 * implements the base class for all WebService requests (www.euplatesc.ro) 
 * 
 * @author Stefan 
 * 
 *      ep_id <string[40]> <required> is the transaction's unique ID receive from the payment system after a successful approval 
 *      mid <string[15]> <required> is the merchant terminal. This is defined on opening a merchant account on EuPlatesc system 
 *      amount <float[10.2]> <required> is the amount of the approved transaction. 
 *      curr <string[3]> <required> is the currency of the approved amount 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the request timestamp set by the merchant system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 */ 

/** 
 * class WSResponse 
 * implements the base class for all WebService response (www.euplatesc.ro) 
 * 
 * @author Stefan 
 * 
 *      ep_id <string[40]> <required> is the transaction's unique ID receive from the payment system after a successful approval 
 *      mid <string[15]> <required> is the merchant terminal. This is defined on opening a merchant account on EuPlatesc system 
 *      status <int> <required> the error code. 0 == OK (no error), != 0 == ERROR (an error occurred) 
 *      message <string> <required> the error description 
 *    fp_hmac, timestamp, nonce value are overwrite after each call of function addHMAC($key, true) 
 *      timestamp <yyyymmddhhiiss> <required> is the response timestamp set by the EuPlatesc system on sending this request. Filled on __constructor if is NULL. 
 *      nonce   hexadecimal string <filled on instance> is random generated on each call. Represents the salt for fp_hash calculation and is used to identify duplicate 
messages. 
 *      fp_hash   hexadecimal string <filled by calculate_fp_hash method> is calculated using data returned by get_fp_hash_data method and the key provided by the 
EuPlatesc. It is the control key of the message.  
 */ 
 
 

http://www.europayment.ro/
http://www.eupayment.eu/

